Show simple item record

dc.contributor.authorBrasco, Lorenzo
dc.contributor.authorDe Philippis, Guido
dc.contributor.authorVelichkov, Bozhidar
dc.date.accessioned2019-04-23T09:10:06Z
dc.date.available2019-04-23T09:10:06Z
dc.date.issued2015
dc.identifier.issn0012-7094
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18735
dc.language.isoenen
dc.subjectStability for eigenvaluesen
dc.subjectregularity for free boundariesen
dc.subjecttorsional rigidityen
dc.subject.ddc515en
dc.titleFaber–Krahn inequalities in sharp quantitative formen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe classical Faber–Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré–Sobolev constant for the embeddings W1,20(Ω)↪Lq(Ω).en
dc.relation.isversionofjnlnameDuke Mathematical Journal
dc.relation.isversionofjnlvol164en
dc.relation.isversionofjnlissue9en
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages1777-1831en
dc.relation.isversionofdoi10.1215/00127094-3120167en
dc.relation.isversionofjnlpublisherDuke University Pressen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-03-27T10:58:48Z
hal.person.labIds60
hal.person.labIds106
hal.person.labIds24474


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record