
Faber–Krahn inequalities in sharp quantitative form
Brasco, Lorenzo; De Philippis, Guido; Velichkov, Bozhidar (2015), Faber–Krahn inequalities in sharp quantitative form, Duke Mathematical Journal, 164, 9, p. 1777-1831. 10.1215/00127094-3120167
View/ Open
Type
Article accepté pour publication ou publiéDate
2015Journal name
Duke Mathematical JournalVolume
164Number
9Publisher
Duke University Press
Pages
1777-1831
Publication identifier
Metadata
Show full item recordAuthor(s)
Brasco, LorenzoCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
De Philippis, Guido
Unité de Mathématiques Pures et Appliquées [UMPA-ENSL]
Velichkov, Bozhidar

Laboratoire Jean Kuntzmann [LJK]
Abstract (EN)
The classical Faber–Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré–Sobolev constant for the embeddings W1,20(Ω)↪Lq(Ω).Subjects / Keywords
Stability for eigenvalues; regularity for free boundaries; torsional rigidityRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
-
Brasco, Lorenzo (2010) Thèse
-
Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
-
Santambrogio, Filippo; Buttazzo, Giuseppe; Brasco, Lorenzo (2011) Article accepté pour publication ou publié
-
Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié