• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Faber–Krahn inequalities in sharp quantitative form

Brasco, Lorenzo; De Philippis, Guido; Velichkov, Bozhidar (2015), Faber–Krahn inequalities in sharp quantitative form, Duke Mathematical Journal, 164, 9, p. 1777-1831. 10.1215/00127094-3120167

View/Open
1306.0392.pdf (995.5Kb)
Type
Article accepté pour publication ou publié
Date
2015
Journal name
Duke Mathematical Journal
Volume
164
Number
9
Publisher
Duke University Press
Pages
1777-1831
Publication identifier
10.1215/00127094-3120167
Metadata
Show full item record
Author(s)
Brasco, Lorenzo
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
De Philippis, Guido
Unité de Mathématiques Pures et Appliquées [UMPA-ENSL]
Velichkov, Bozhidar cc
Laboratoire Jean Kuntzmann [LJK]
Abstract (EN)
The classical Faber–Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet Laplacian among sets with given volume. In this article we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and by Bhattacharya and Weitsman. More generally, the result applies to every optimal Poincaré–Sobolev constant for the embeddings W1,20(Ω)↪Lq(Ω).
Subjects / Keywords
Stability for eigenvalues; regularity for free boundaries; torsional rigidity

Related items

Showing items related by title and author.

  • Thumbnail
    On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds 
    Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
  • Thumbnail
    Geodesics and PDE methods in transport models 
    Brasco, Lorenzo (2010) Thèse
  • Thumbnail
    Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    A Benamou-Brenier approach to branched transport 
    Santambrogio, Filippo; Buttazzo, Giuseppe; Brasco, Lorenzo (2011) Article accepté pour publication ou publié
  • Thumbnail
    Congested traffic equilibria and degenerate anisotropic PDEs 
    Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo