The Price of Optimum: Complexity and Approximation for a Matching Game
Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme (2017), The Price of Optimum: Complexity and Approximation for a Matching Game, Algorithmica, 77, 3, p. 836-866. 10.1007/s00453-015-0108-5
Type
Article accepté pour publication ou publiéDate
2017Journal name
AlgorithmicaVolume
77Number
3Publisher
Springer
Pages
836-866
Publication identifier
Metadata
Show full item recordAuthor(s)
Escoffier, BrunoLaboratoire d'Informatique de Paris 6 [LIP6]
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This paper deals with a matching game in which the nodes of a simple graph are independent agents who try to form pairs. If we let the agents make their decision without any central control then a possible outcome is a Nash equilibrium, that is a situation in which no unmatched player can change his strategy and find a partner. However, there can be a big difference between two possible outcomes of the same instance, in terms of number of matched nodes. A possible solution is to force all the nodes to follow a centrally computed maximum matching but it can be difficult to implement this approach. This article proposes a tradeoff between the total absence and the full presence of a central control. Concretely, we study the optimization problem where the action of a minimum number of agents is centrally fixed and any possible equilibrium of the modified game must be a maximum matching. In algorithmic game theory, this approach is known as the price of optimum of a game. For the price of optimum of the matching game, deciding whether a solution is feasible is not straightforward, but we prove that it can be done in polynomial time. In addition, the problem is shown APX-hard, since its restriction to graphs admitting a perfect matching is equivalent, from the approximability point of view, to vertex cover. Finally we prove that this problem admits a polynomial 6-approximation algorithm in general graphs.Subjects / Keywords
Approximation algorithm; Srategic game; Complexity; Price of Anarchy; Price of optimum; Stackelberg strategyRelated items
Showing items related by title and author.
-
Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme (2011) Communication / Conférence
-
Monnot, Jérôme; Gourvès, Laurent; Escoffier, Bruno (2010) Article accepté pour publication ou publié
-
Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme (2007) Document de travail / Working paper
-
Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme (2007) Communication / Conférence
-
Gourvès, Laurent; Escoffier, Bruno; Spanjaard, Olivier; Monnot, Jérôme (2010) Article accepté pour publication ou publié