• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Self-Adjointness of two dimensional Dirac operators on corner domains

Thumbnail
View/Open
1902.05010.pdf (291.3Kb)
Date
2019
Publisher city
Paris
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Publishing date
2019
Collection title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Link to item file
https://hal.archives-ouvertes.fr/hal-02018711
Dewey
Analyse
Sujet
Dirac operators; self-adjointenss
URI
https://basepub.dauphine.fr/handle/123456789/18664
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Pizzichillo, Fabio
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bosch, Hanne Van Den
Type
Document de travail / Working paper
Item number of pages
21
Abstract (EN)
We study the self-adjointenss of the two-dimensional Dirac operator with Quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains with finitely many corners. For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result is then translated to general domains by a coordinate transformation.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.