• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Abandon Statistical Significance

Thumbnail
Ouvrir
1709.07588.pdf (228.9Kb)
Date
2019
Ville de l'éditeur
Paris
Indexation documentaire
Analyse
Subject
null hypothesis significance testing; statistical significance; p-value; sociology ofscience; replication
Nom de la revue
The American Statistician
Volume
73
Numéro
Sup.1
Date de publication
2019
Pages article
235-245
Nom de l'éditeur
American Statistical Association
DOI
http://dx.doi.org/10.1080/00031305.2018.1527253
URI
https://basepub.dauphine.fr/handle/123456789/18654
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
McShane, Blakeley B.
200922 Kellogg School of Management
Gal, David
Gelman, Andrew
85041 Applied Statistics Center Columbia University
Robert, Christian P.
Tackett, Jennifer L.
Type
Article accepté pour publication ou publié
Résumé en anglais
We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm--and the p-value thresholds intrinsic to it--as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to ban" p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly."

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.