
Abandon Statistical Significance
McShane, Blakeley B.; Gal, David; Gelman, Andrew; Robert, Christian P.; Tackett, Jennifer L. (2019), Abandon Statistical Significance, The American Statistician, 73, Sup.1, p. 235-245. 10.1080/00031305.2018.1527253
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
The American StatisticianVolume
73Number
Sup.1Publisher
American Statistical Association
Published in
Paris
Pages
235-245
Publication identifier
Metadata
Show full item recordAuthor(s)
McShane, Blakeley B.Kellogg School of Management
Gal, David
Gelman, Andrew
Applied Statistics Center Columbia University
Robert, Christian P.
Tackett, Jennifer L.
Abstract (EN)
We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm--and the p-value thresholds intrinsic to it--as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to ban" p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly."Subjects / Keywords
null hypothesis significance testing; statistical significance; p-value; sociology ofscience; replicationRelated items
Showing items related by title and author.
-
Gelman, Andrew; Robert, Christian P. (2014) Article accepté pour publication ou publié
-
Robert, Christian P.; Mengersen, Kerrie; Gelman, Andrew; Chopin, Nicolas (2013) Article accepté pour publication ou publié
-
Robert, Christian P.; Gelman, Andrew (2013) Article accepté pour publication ou publié
-
Robert, Christian P.; Gelman, Andrew (2013) Article accepté pour publication ou publié
-
Gelman, Andrew; Robert, Christian P.; Rousseau, Judith (2013) Article accepté pour publication ou publié