
Coordinate sampler: a non-reversible Gibbs-like MCMC sampler
Wu, Changye; Robert, Christian P. (2020), Coordinate sampler: a non-reversible Gibbs-like MCMC sampler, Statistics and Computing, 30, p. 721–730. 10.1007/s11222-019-09913-w
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2020Nom de la revue
Statistics and ComputingVolume
30Éditeur
Springer
Ville d’édition
Paris
Pages
721–730
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Wu, ChangyeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
We derive a novel non-reversible, continuous-time Markov chain Monte Carlo sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process, which is a variant of the Zigzag sampler of Bierkens et al. (Ann Stat 47(3):1288–1320, 2019). In addition to providing a theoretical validation for this new simulation algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. Several numerical examples highlight that our coordinate sampler is more efficient than the Zigzag sampler, in terms of effective sample size.Mots-clés
Markov chain Monte Carlo; Piecewise deterministic Markovprocesses; Zigzag sampling; Gibbs samplingPublications associées
Affichage des éléments liés par titre et auteur.
-
Robert, Christian P.; Elvira, Víctor; Tawn, Nick; Wu, Changye (2018) Article accepté pour publication ou publié
-
Robert, Christian P.; Wu, Changye (2017) Document de travail / Working paper
-
Wu, Changye; Robert, Christian P. (2017) Document de travail / Working paper
-
Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019) Document de travail / Working paper
-
Wu, Changye; Robert, Christian P. (2020) Chapitre d'ouvrage