• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Coordinate sampler: a non-reversible Gibbs-like MCMC sampler

Wu, Changye; Robert, Christian P. (2020), Coordinate sampler: a non-reversible Gibbs-like MCMC sampler, Statistics and Computing, 30, p. 721–730. 10.1007/s11222-019-09913-w

View/Open
1809.03388.pdf (447.1Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Statistics and Computing
Volume
30
Publisher
Springer
Published in
Paris
Pages
721–730
Publication identifier
10.1007/s11222-019-09913-w
Metadata
Show full item record
Author(s)
Wu, Changye
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We derive a novel non-reversible, continuous-time Markov chain Monte Carlo sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process, which is a variant of the Zigzag sampler of Bierkens et al. (Ann Stat 47(3):1288–1320, 2019). In addition to providing a theoretical validation for this new simulation algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. Several numerical examples highlight that our coordinate sampler is more efficient than the Zigzag sampler, in terms of effective sample size.
Subjects / Keywords
Markov chain Monte Carlo; Piecewise deterministic Markovprocesses; Zigzag sampling; Gibbs sampling

Related items

Showing items related by title and author.

  • Thumbnail
    Accelerating MCMC algorithms 
    Robert, Christian P.; Elvira, Víctor; Tawn, Nick; Wu, Changye (2018) Article accepté pour publication ou publié
  • Thumbnail
    Average of Recentered Parallel MCMC for Big Data 
    Robert, Christian P.; Wu, Changye (2017) Document de travail / Working paper
  • Thumbnail
    Generalized Bouncy Particle Sampler 
    Wu, Changye; Robert, Christian P. (2017) Document de travail / Working paper
  • Thumbnail
    Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale 
    Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019) Document de travail / Working paper
  • Thumbnail
    Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation 
    Wu, Changye; Robert, Christian P. (2020) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo