• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Learning Agents for Iterative Voting

Airiau, Stéphane; Grandi, Umberto; Studzinski Perotto, Filipo (2017), Learning Agents for Iterative Voting, in Rothe, Jörg, Algorithmic Decision Theory - 5th International Conference (ADT 2017), Springer International Publishing : Berlin Heidelberg, p. 139-152. 10.1007/978-3-319-67504-6_10

Type
Communication / Conférence
Date
2017
Conference title
5th International Conference (ADT 2017)
Conference date
2017-10
Conference city
Luxembourg
Conference country
Luxembourg
Book title
Algorithmic Decision Theory - 5th International Conference (ADT 2017)
Book author
Rothe, Jörg
Publisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-319-67503-9
Number of pages
390
Pages
139-152
Publication identifier
10.1007/978-3-319-67504-6_10
Metadata
Show full item record
Author(s)
Airiau, Stéphane cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Grandi, Umberto cc

Studzinski Perotto, Filipo cc
Abstract (EN)
This paper assesses the learning capabilities of agents in a situation of collective choice. Each agent is endowed with a private preference concerning a number of alternative candidates, and participates in an iterated plurality election. Agents get rewards depending on the winner of each election, and adjust their voting strategy using reinforcement learning. By conducting extensive simulations, we show that our agents are capable of learning how to take decisions at the level of well-known voting procedures, and that these decisions maintain good choice-theoretic properties when increasing the number of agents or candidates.
Subjects / Keywords
Computational social choice; Iterative voting; Bandit algorithms

Related items

Showing items related by title and author.

  • Thumbnail
    Emergence of conventions through social learning 
    Airiau, Stéphane; Sen, Sandip; Villatoro, Daniel (2014) Article accepté pour publication ou publié
  • Thumbnail
    A fair and efficient payoff based modeling the coalition formation process for games with valuations 
    Airiau, Stéphane (2013) Communication / Conférence
  • Thumbnail
    Poll-Confident Voters in Iterative Voting 
    Wilczynski, Anaëlle (2019) Communication / Conférence
  • Thumbnail
    About contrastive unsupervised representation learning for classification and its convergence 
    Merad, Ibrahim; Yu, Yiyang; Bacry, Emmanuel; Gaïffas, Stéphane (2021) Document de travail / Working paper
  • Thumbnail
    ZiMM : a deep learning model for long term adverse events with non-clinical claims data 
    Kabeshova, Anastasiia; Yu, Yiyang; Lukacs, Bertrand; Bacry, Emmanuel; Gaïffas, Stéphane (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo