• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Computational Solutions for Bayesian Inference in Mixture Models

Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019), Computational Solutions for Bayesian Inference in Mixture Models, in Sylvia Fruhwirth-Schnatter, Gilles Celeux, Christian P. Robert, Handbook of Mixture Analysis, CRC Press, Taylor & Francis, p. 24

View/Open
1812.07240.pdf (1003.Kb)
Type
Chapitre d'ouvrage
Date
2019
Book title
Handbook of Mixture Analysis
Book author
Sylvia Fruhwirth-Schnatter, Gilles Celeux, Christian P. Robert
Publisher
CRC Press, Taylor & Francis
ISBN
9781498763813
Number of pages
498
Pages
24
Metadata
Show full item record
Author(s)
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Celeux, Gilles
INRIA Rocquencourt
Kamary, Kaniav
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Malsiner-Walli, Gertraud
Institute for Information Business, Wirtschaftsuniversität Wien [Institute for Information Business, Wirtschaftsuniversität Wien (WU Vienna)]
Marin, Jean-Michel cc
Institut de Mathématiques et de Modélisation de Montpellier [I3M]
Abstract (EN)
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.
Subjects / Keywords
Bayesian Inference; Mixture Models

Related items

Showing items related by title and author.

  • Thumbnail
    Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation 
    Celeux, Gilles; El Anbari, Mohammed; Marin, Jean-Michel; Robert, Christian P. (2012) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Modelling and Inference on Mixtures of Distributions 
    Marin, Jean-Michel; Mengersen, Kerrie; Robert, Christian P. (2005) Chapitre d'ouvrage
  • Thumbnail
    Some discussions on the Read Paper Beyond subjective and objective in statistics" by A. Gelman and C. Hennig" 
    Celeux, Gilles; Jewson, Jack; Josse, Julie; Marin, Jean-Michel; Robert, Christian P. (2017) Document de travail / Working paper
  • Thumbnail
    Iterated importance sampling in missing data problems 
    Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006) Article accepté pour publication ou publié
  • Thumbnail
    Why approximate Bayesian computational (ABC) methods cannot handle model choice problems 
    Pillai, Natesh S.; Marin, Jean-Michel; Robert, Christian P. (2011-01) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo