
Hypocoercivity of linear kinetic equations via Harris's Theorem
Cañizo, José; Cao, Chuqi; Evans, Josephine; Yoldaş, Havva (2020), Hypocoercivity of linear kinetic equations via Harris's Theorem, Kinetic & Related Models, 13, 1, p. 97-128. 10.3934/krm.2020004
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Kinetic & Related ModelsVolume
13Number
1Publisher
AIMS - American Institute of Mathematical Sciences
Published in
Paris
Pages
97-128
Publication identifier
Metadata
Show full item recordAuthor(s)
Cañizo, JoséDepartamento de Matemática Aplicada
Cao, Chuqi
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Evans, Josephine
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Yoldaş, Havva
Basque Center for Applied Mathematics [BCAM]
Abstract (EN)
We study convergence to equilibrium of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus (x, v) ∈ T d × R d or on the whole space (x, v) ∈ R d × R d with a confining potential. We present explicit convergence results in total variation or weighted total variation norms (alternatively L 1 or weighted L 1 norms). The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method from the theory of Markov processes known as Harris's Theorem.Subjects / Keywords
Harris's Theorem; linear BGKRelated items
Showing items related by title and author.
-
Cao, Chuqi (2019-10-10) Thèse
-
Evans, Josephine (2021) Article accepté pour publication ou publié
-
Evans, Josephine; Moyano, Iván (2019-09) Document de travail / Working paper
-
Cao, Chuqi (2021) Article accepté pour publication ou publié
-
Cao, Chuqi; Li, Xingyu (2021) Document de travail / Working paper