
Poisson processes and a log-concave Bernstein theorem
Klartag, Bo'az; Lehec, Joseph (2019), Poisson processes and a log-concave Bernstein theorem, Studia Mathematica, 247, p. 85-107. 10.4064/sm180212-30-7
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01708514Date
2019Journal name
Studia MathematicaNumber
247Publisher
Instytut Matematyczny- Polska Akademia Nauk
Pages
85-107
Publication identifier
Metadata
Show full item recordAuthor(s)
Klartag, Bo'azWeizmann Institute of Science
Lehec, Joseph

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Département de Mathématiques et Applications - ENS Paris [DMA]
Abstract (EN)
We discuss interplays between log-concave functions and log-concave sequences. We prove a Bernstein-type theorem, which characterizes the Laplace transform of log-concave measures on the half-line in terms of log-concavity of the alternating Taylor coefficients. We establish concavity inequalities for sequences inspired by the Pr\'ekopa-Leindler and the Walkup theorems. One of our main tools is a stochastic variational formula for the Poisson average.Subjects / Keywords
log-concave functions; log-concave sequencesRelated items
Showing items related by title and author.
-
Eldan, Ronen; Lehec, Joseph (2014) Chapitre d'ouvrage
-
Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2017) Document de travail / Working paper
-
Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2018) Article accepté pour publication ou publié
-
Lehec, Joseph (2021) Document de travail / Working paper
-
Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013) Article accepté pour publication ou publié