• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Poisson processes and a log-concave Bernstein theorem

Klartag, Bo'az; Lehec, Joseph (2019), Poisson processes and a log-concave Bernstein theorem, Studia Mathematica, 247, p. 85-107. 10.4064/sm180212-30-7

View/Open
log_concave_bernstein_Arxiv.pdf (304.4Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01708514
Date
2019
Journal name
Studia Mathematica
Number
247
Publisher
Instytut Matematyczny- Polska Akademia Nauk
Pages
85-107
Publication identifier
10.4064/sm180212-30-7
Metadata
Show full item record
Author(s)
Klartag, Bo'az
Weizmann Institute of Science
Lehec, Joseph cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Département de Mathématiques et Applications - ENS Paris [DMA]
Abstract (EN)
We discuss interplays between log-concave functions and log-concave sequences. We prove a Bernstein-type theorem, which characterizes the Laplace transform of log-concave measures on the half-line in terms of log-concavity of the alternating Taylor coefficients. We establish concavity inequalities for sequences inspired by the Pr\'ekopa-Leindler and the Walkup theorems. One of our main tools is a stochastic variational formula for the Poisson average.
Subjects / Keywords
log-concave functions; log-concave sequences

Related items

Showing items related by title and author.

  • Thumbnail
    Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates 
    Eldan, Ronen; Lehec, Joseph (2014) Chapitre d'ouvrage
  • Thumbnail
    Sampling from a log-concave distribution with Projected Langevin Monte Carlo 
    Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2017) Document de travail / Working paper
  • Thumbnail
    Sampling from a log-concave distribution with Projected Langevin Monte Carlo 
    Bubeck, Sébastien; Eldan, Ronen; Lehec, Joseph (2018) Article accepté pour publication ou publié
  • Thumbnail
    The Langevin Monte Carlo algorithm in the non-smooth log-concave case 
    Lehec, Joseph (2021) Document de travail / Working paper
  • Thumbnail
    Asymptotics of the discrete log-concave maximum likelihood estimator and related applications 
    Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo