
Accelerating MCMC algorithms
Robert, Christian P.; Elvira, Víctor; Tawn, Nick; Wu, Changye (2018), Accelerating MCMC algorithms, Wiley Interdisciplinary Reviews: Computational Statistics, 10, 5, p. 1-22. 10.1002/wics.1435
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01961128Date
2018Journal name
Wiley Interdisciplinary Reviews: Computational StatisticsVolume
10Number
5Pages
1-22
Publication identifier
Metadata
Show full item recordAuthor(s)
Robert, Christian P.CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Elvira, Víctor

Tawn, Nick
Wu, Changye
Abstract (EN)
Markov chain Monte Carlo algorithms are used to simulate from complex statistical distributions by way of a local exploration of these distributions. This local feature avoids heavy requests on understanding the nature of the target, but it also potentially induces a lengthy exploration of this target, with a requirement on the number of simulations that grows with the dimension of the problem and with the complexity of the data behind it. Several techniques are available toward accelerating the convergence of these Monte Carlo algorithms, either at the exploration level (as in tempering, Hamiltonian Monte Carlo and partly deterministic methods) or at the exploitation level (with Rao–Blackwellization and scalable methods).Subjects / Keywords
Markov chain; Monte Carlo algorithmsRelated items
Showing items related by title and author.
-
Wu, Changye; Robert, Christian P. (2020) Article accepté pour publication ou publié
-
Robert, Christian P.; Wu, Changye (2017) Document de travail / Working paper
-
Wu, Changye; Robert, Christian P. (2020) Chapitre d'ouvrage
-
Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019) Document de travail / Working paper
-
Wu, Changye; Robert, Christian P. (2017) Document de travail / Working paper