• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Accelerating MCMC algorithms

Robert, Christian P.; Elvira, Víctor; Tawn, Nick; Wu, Changye (2018), Accelerating MCMC algorithms, Wiley Interdisciplinary Reviews: Computational Statistics, 10, 5, p. 1-22. 10.1002/wics.1435

View/Open
1804.02719.pdf (464.9Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01961128
Date
2018
Journal name
Wiley Interdisciplinary Reviews: Computational Statistics
Volume
10
Number
5
Pages
1-22
Publication identifier
10.1002/wics.1435
Metadata
Show full item record
Author(s)
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Elvira, Víctor cc

Tawn, Nick

Wu, Changye
Abstract (EN)
Markov chain Monte Carlo algorithms are used to simulate from complex statistical distributions by way of a local exploration of these distributions. This local feature avoids heavy requests on understanding the nature of the target, but it also potentially induces a lengthy exploration of this target, with a requirement on the number of simulations that grows with the dimension of the problem and with the complexity of the data behind it. Several techniques are available toward accelerating the convergence of these Monte Carlo algorithms, either at the exploration level (as in tempering, Hamiltonian Monte Carlo and partly deterministic methods) or at the exploitation level (with Rao–Blackwellization and scalable methods).
Subjects / Keywords
Markov chain; Monte Carlo algorithms

Related items

Showing items related by title and author.

  • Thumbnail
    Coordinate sampler: a non-reversible Gibbs-like MCMC sampler 
    Wu, Changye; Robert, Christian P. (2020) Article accepté pour publication ou publié
  • Thumbnail
    Average of Recentered Parallel MCMC for Big Data 
    Robert, Christian P.; Wu, Changye (2017) Document de travail / Working paper
  • Thumbnail
    Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation 
    Wu, Changye; Robert, Christian P. (2020) Chapitre d'ouvrage
  • Thumbnail
    Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale 
    Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019) Document de travail / Working paper
  • Thumbnail
    Generalized Bouncy Particle Sampler 
    Wu, Changye; Robert, Christian P. (2017) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo