• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models

Martin, Gaël; McCabe, Brendan P.M.; Frazier, David T.; Maneesoonthorn, Worapree; Robert, Christian P. (2019), Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models, Journal of Computational and Graphical Statistics, 28, 3, p. 508-522. 10.1080/10618600.2018.1552154

View/Open
1604.07949.pdf (363.3Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01961123
Date
2019
Journal name
Journal of Computational and Graphical Statistics
Volume
28
Number
3
Publisher
Taylor & Francis
Pages
508-522
Publication identifier
10.1080/10618600.2018.1552154
Metadata
Show full item record
Author(s)
Martin, Gaël

McCabe, Brendan P.M.

Frazier, David T.

Maneesoonthorn, Worapree

Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
A computationally simple approach to inference in state space models is proposed, using approximate Bayesian computation (ABC). ABC avoids evaluation of an intractable likelihood by matching summary statistics for the observed data with statistics computed from data simulated from the true process, based on parameter draws from the prior. Draws that produce a “match” between observed and simulated summaries are retained, and used to estimate the inaccessible posterior. With no reduction to a low-dimensional set ofsufficient statistics being possible in the state space setting, we define the summaries as the maximum of an auxiliary likelihood function, and thereby exploit the asymptotic sufficiency of this estimator for the auxiliary parameter vector. We derive conditions under which this approach—including a computationally efficient version based on the auxiliary score—achieves Bayesian consistency. To reduce the well-documented inaccuracy of ABC in multiparameter settings, we propose the separate treatment of each parameter dimension using an integrated likelihood technique. Three stochastic volatility models for which exact Bayesian inference is either computationally challenging, or infeasible, are used for illustration. We demonstrate that our approach compares favorably against an extensive set of approximate and exact comparators. An empirical illustration completes the article. Supplementary materials for this article are available online.
Subjects / Keywords
Alpha-stable distribution; Asymptotic sufficiency; Bayesian consistency; Likelihood-free method; Stochastic volatility model; Unscented Kalman filter

Related items

Showing items related by title and author.

  • Thumbnail
    Asymptotic Properties of Approximate Bayesian Computation 
    Frazier, David T.; Martin, Gaël; Robert, Christian P.; Rousseau, Judith (2018) Article accepté pour publication ou publié
  • Thumbnail
    Lack of confidence in approximate Bayesian computation model choice 
    Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo