Show simple item record

dc.contributor.authorFranceschi, Valentina
dc.contributor.authorPrandi, Dario
dc.contributor.authorRizzi, Luca
dc.date.accessioned2019-03-25T13:06:06Z
dc.date.available2019-03-25T13:06:06Z
dc.date.issued2019
dc.identifier.issn0926-2601
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18562
dc.language.isoenen
dc.subjectSub-Laplacianen
dc.subjectHörmander-type operatorsen
dc.subjectSingular measureen
dc.subjectPopp’s measureen
dc.subjectQuantum confinementen
dc.subject.ddc515en
dc.titleOn the Essential Self-Adjointness of Singular Sub-Laplaciansen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove a general essential self-adjointness criterion for sub-Laplacians on complete sub-Riemannian manifolds, defined with respect to singular measures. We also show that, in the compact case, this criterion implies discreteness of the sub-Laplacian spectrum even though the total volume of the manifold is infinite. As a consequence of our result, the intrinsic sub-Laplacian (i.e. defined w.r.t. Popp’s measure) is essentially self-adjoint on the equiregular connected components of a sub-Riemannian manifold. This settles a conjecture formulated by Boscain and Laurent (Ann. Inst. Fourier (Grenoble) 63(5), 1739–1770, 2013), under mild regularity assumptions on the singular region, and when the latter does not contain characteristic points.en
dc.relation.isversionofjnlnamePotential Analysis
dc.relation.isversionofjnldate2019-01
dc.relation.isversionofjnlpages1-24en
dc.relation.isversionofdoi10.1007/s11118-018-09760-wen
dc.relation.isversionofjnlpublisherStep Communicationsen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-03-25T13:03:36Z
hal.person.labIds40$$$89626
hal.person.labIds60$$$1289
hal.person.labIds21


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record