Show simple item record

dc.contributor.authorFranceschi, Valentina*
dc.contributor.authorPrandi, Dario*
dc.contributor.authorRizzi, Luca*
dc.date.accessioned2019-03-25T13:06:06Z
dc.date.available2019-03-25T13:06:06Z
dc.date.issued2019
dc.identifier.issn0926-2601
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18562
dc.language.isoenen
dc.subjectSub-Laplacian
dc.subjectHörmander-type operators
dc.subjectSingular measure
dc.subjectPopp’s measure
dc.subjectQuantum confinement
dc.subject.ddc515en
dc.titleOn the Essential Self-Adjointness of Singular Sub-Laplacians
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove a general essential self-adjointness criterion for sub-Laplacians on complete sub-Riemannian manifolds, defined with respect to singular measures. We also show that, in the compact case, this criterion implies discreteness of the sub-Laplacian spectrum even though the total volume of the manifold is infinite. As a consequence of our result, the intrinsic sub-Laplacian (i.e. defined w.r.t. Popp’s measure) is essentially self-adjoint on the equiregular connected components of a sub-Riemannian manifold. This settles a conjecture formulated by Boscain and Laurent (Ann. Inst. Fourier (Grenoble) 63(5), 1739–1770, 2013), under mild regularity assumptions on the singular region, and when the latter does not contain characteristic points.
dc.relation.isversionofjnlnamePotential Analysis
dc.relation.isversionofjnlvol53
dc.relation.isversionofjnldate2019
dc.relation.isversionofjnlpages89-112
dc.relation.isversionofdoi10.1007/s11118-018-09760-w
dc.relation.isversionofjnlpublisherStep Communications
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-07-01T12:26:58Z
hal.person.labIds40$$$89626*
hal.person.labIds60$$$1289*
hal.person.labIds21*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record