Show simple item record

dc.contributor.authorAlessio, Francesca
dc.contributor.authorMontecchiari, Piero
dc.contributor.authorZuniga, Andres
dc.date.accessioned2019-03-25T11:19:37Z
dc.date.available2019-03-25T11:19:37Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18558
dc.language.isoenen
dc.subjectVariational methodsen
dc.subjectheteroclinic orbitsen
dc.subjectconservative systemsen
dc.subjectenergy constraintsen
dc.subjectbrake orbitsen
dc.subjecthomoclinic orbitsen
dc.subjectconvergence of solutionsen
dc.subject.ddc515en
dc.titlePrescribed energy connecting orbits for gradient systemsen
dc.typeDocument de travail / Working paper
dc.contributor.editoruniversityotherUNIVPM - Università Politecnica delle Marche;Italy
dc.description.abstractenWe are concerned with conservative systems ¨q=∇V(q), q∈RN for a general class of potentials V∈C1(RN). Assuming that a given sublevel set {V≤c} splits in the disjoint union of two closed subsets Vc− and Vc+, for some c∈R, we establish the existence of bounded solutions qc to the above system with energy equal to −c whose trajectories connect Vc− and Vc+. The solutions are obtained through an energy constrained variational method, whenever mild coerciveness properties are present in the problem. The connecting orbits are classified into brake, heteroclinic or homoclinic type, depending on the behavior of ∇V on ∂Vc±. Next, we illustrate applications of the existence result to double-well potentials V, and for potentials associated to systems of duffing type and of multiple-pendulum type. In each of the above cases we prove some convergence results of the family of solutions (qc).en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages34en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01990860en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-01
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-03-25T11:02:06Z
hal.person.labIds
hal.person.labIds
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record