Show simple item record

dc.contributor.authorAlessio, Francesca*
dc.contributor.authorMontecchiari, Piero*
dc.contributor.authorZuniga, Andrés*
dc.date.accessioned2019-03-25T11:19:37Z
dc.date.available2019-03-25T11:19:37Z
dc.date.issued2019
dc.identifier.issn1078-0947
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18558
dc.language.isoenen
dc.subjectVariational methods
dc.subjectheteroclinic orbits
dc.subjectconservative systems
dc.subjectenergy constraints
dc.subjectbrake orbits
dc.subjecthomoclinic orbits
dc.subjectconvergence of solutions
dc.subject.ddc515en
dc.titlePrescribed energy connecting orbits for gradient systems
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe are concerned with conservative systems ¨q=∇V(q), q∈RN for a general class of potentials V∈C1(RN). Assuming that a given sublevel set {V≤c} splits in the disjoint union of two closed subsets Vc− and Vc+, for some c∈R, we establish the existence of bounded solutions qc to the above system with energy equal to −c whose trajectories connect Vc− and Vc+. The solutions are obtained through an energy constrained variational method, whenever mild coerciveness properties are present in the problem. The connecting orbits are classified into brake, heteroclinic or homoclinic type, depending on the behavior of ∇V on ∂Vc±. Next, we illustrate applications of the existence result to double-well potentials V, and for potentials associated to systems of duffing type and of multiple-pendulum type. In each of the above cases we prove some convergence results of the family of solutions (qc).
dc.publisher.cityParisen
dc.relation.isversionofjnlnameDiscrete and Continuous Dynamical Systems. Series A
dc.relation.isversionofjnlvol39
dc.relation.isversionofjnlissue8
dc.relation.isversionofjnldate2019
dc.relation.isversionofjnlpages4895-4928
dc.relation.isversionofdoi10.3934/dcds.2019200
dc.relation.isversionofjnlpublisherAIMS - American Institute of Mathematical Sciences
dc.subject.ddclabelAnalyseen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-10-08T11:24:13Z
hal.person.labIds1030161*
hal.person.labIds1030161*
hal.person.labIds60*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record