Show simple item record

dc.contributor.authorGarrigue, Louis
dc.date.accessioned2019-03-25T11:19:23Z
dc.date.available2019-03-25T11:19:23Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18557
dc.language.isoenen
dc.subjectmany-body Pauli operatorsen
dc.subjectmagnetic fieldsen
dc.subjectHohenberg-Kohn theoremen
dc.subjectMaxwell-Schrödinger modelen
dc.subject.ddc520en
dc.titleUnique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonianen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe prove the strong unique continuation property for many-body Pauli operators with external potentials, interaction potentials and magnetic fields in Lploc(Rd), and with magnetic potentials in Lqloc(Rd), where p>max(2d/3,2) and q>2d. For this purpose, we prove a singular Carleman estimate involving fractional Laplacian operators. Consequently, we obtain the Hohenberg-Kohn theorem for the Maxwell-Schrödinger model.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages21en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01989476en
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.identifier.citationdate2019-01
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-03-25T11:17:54Z
hal.person.labIds60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record