
A surjection theorem for singular perturbations with loss of derivatives
Ekeland, Ivar; Séré, Eric (2019), A surjection theorem for singular perturbations with loss of derivatives. https://basepub.dauphine.fr/handle/123456789/18489
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01924328Date
2019Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
24
Metadata
Show full item recordAuthor(s)
Ekeland, IvarCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper we introduce a new algorithm for solving nonlinear functional equations which admit a right-invertible linearization, but such that the inverse loses derivatives. The main difference with the by now classical Nash-Moser algorithm is that, instead of using a regularized Newton scheme, we solve a sequence of Galerkin problems thanks to a topological argument. As a consequence, in our estimates there are no quadratic terms. We apply our method to a singular perturbation problem with loss of derivatives studied by Texier-Zumbrun. We will compare the two results and we will show that ours improves significantly on theirs, when applied, in particular, to a nonlinear Schrödinger Cauchy problem with highly oscillatory initial data.Subjects / Keywords
linear functional equations; nonlinear Schrödinger Cauchy problemRelated items
Showing items related by title and author.
-
Ekeland, Ivar; Séré, Eric (2021) Article accepté pour publication ou publié
-
Séré, Eric; Ekeland, Ivar (2014) Document de travail / Working paper
-
Tanaka, Kazunaga; Séré, Eric; Carminati, Carlo (2006) Article accepté pour publication ou publié
-
Zelati, Vittorio Coti; Ekeland, Ivar; Séré, Eric (1990) Article accepté pour publication ou publié
-
Touzi, Nizar; Ekeland, Ivar; Carlier, Guillaume (2007) Article accepté pour publication ou publié