
Approximation of variational problems with a convexity constraint by PDEs of Abreu type
Carlier, Guillaume; Radice, Teresa (2018), Approximation of variational problems with a convexity constraint by PDEs of Abreu type. https://basepub.dauphine.fr/handle/123456789/18467
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01802925Date
2018Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
16
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Radice, Teresa
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Abstract (EN)
Motivated by some variational problems subject to a convexity constraint, we consider an approximation using the logarithm of the Hessian determinant as a barrier for the constraint. We show that the minimizer of this penalization can be approached by solving a second boundary value problem for Abreu's equation which is a well-posed nonlinear fourth-order elliptic problem. More interestingly, a similar approximation result holds for the initial constrained variational problem.Subjects / Keywords
Abreu equation; Monge-Ampère operator; calculus of varia-; tions with a convexity constraintRelated items
Showing items related by title and author.
-
Lachand-Robert, Thomas; Carlier, Guillaume (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dupuis, Xavier (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume (2002) Article accepté pour publication ou publié
-
Dana, Rose-Anne; Carlier, Guillaume (2006) Article accepté pour publication ou publié