
Mixing time and cutoff for the weakly asymmetric simple exclusion process
Labbé, Cyril; Lacoin, Hubert (2018), Mixing time and cutoff for the weakly asymmetric simple exclusion process. https://basepub.dauphine.fr/handle/123456789/18451
View/ Open
Type
Document de travail / Working paperExternal document link
https://arxiv.org/abs/1805.12213Date
2018Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
39
Metadata
Show full item recordAuthor(s)
Labbé, CyrilCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lacoin, Hubert
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Abstract (EN)
We consider the simple exclusion process with k particles on a segment of length N performing random walks with transition p>1/2 to the right and q=1−p to the left. We focus on the case where the asymmetry in the jump rates b=p−q>0 vanishes in the limit when N and k tend to infinity, and obtain sharp asymptotics for the mixing times of this sequence of Markov chains in the two cases where the asymmetry is either much larger or much smaller than (logk)/N. We show that in the former case (b≫(logk)/N), the mixing time corresponds to the time needed to reach macroscopic equilibrium, like for the strongly asymmetric (i.e.\ constant b) case studied in [LL18], while the latter case (b≪(logk)/N) macroscopic equilibrium is not sufficient for mixing and one must wait till local fluctuations equilibrate, similarly to what happens in the symmetric case worked out in [Lac16b]. In both cases, convergence to equilibrium is abrupt: we have a cutoff phenomenon for the total-variation distance. We present a conjecture for the remaining regime when the asymmetry is of order (logk)/N.Subjects / Keywords
Exclusion process; WASEP; Mixing time; CutoffRelated items
Showing items related by title and author.
-
Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
-
Lacoin, Hubert (2016) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Lacoin, Hubert; Leblond, Rémi (2011) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Document de travail / Working paper