
The reconstruction theorem in Besov spaces
Hairer, Martin; Labbé, Cyril (2017), The reconstruction theorem in Besov spaces, Journal of Functional Analysis, 273, 8, p. 2578 - 2618. 10.1016/j.jfa.2017.07.002
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1609.04543Date
2017Journal name
Journal of Functional AnalysisVolume
273Number
8Publisher
Elsevier
Pages
2578 - 2618
Publication identifier
Metadata
Show full item recordAuthor(s)
Hairer, MartinWarwick Mathematics Institute [WMI]
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The theory of regularity structures sets up an abstract framework of modelled distributions generalising the usual H\"older functions and allowing one to give a meaning to several ill-posed stochastic PDEs. A key result in that theory is the so-called reconstruction theorem: it defines a continuous linear operator that maps spaces of "modelled distributions" into the usual space of distributions. In the present paper, we extend the scope of this theorem to analogues to the whole class of Besov spaces Bγp,q with non-integer regularity indices. We then show that these spaces behave very much like their classical counterparts by obtaining the corresponding embedding theorems and Schauder-type estimates.Subjects / Keywords
Regularity structures; Besov spaces; Embedding theorems; Schauder estimatesRelated items
Showing items related by title and author.
-
Hairer, Martin; Labbé, Cyril (2018) Article accepté pour publication ou publié
-
Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
-
Hsu, Yueh-Sheng; Labbé, Cyril (2022) Article accepté pour publication ou publié
-
Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
-
Labbé, Cyril (2019) Article accepté pour publication ou publié