• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Bayesian Modeling of Motion Perception using Dynamical Stochastic Textures

Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2018), Bayesian Modeling of Motion Perception using Dynamical Stochastic Textures, Neural Computation, 130, 12, p. 3355-3392. 10.1162/neco_a_01142

Voir/Ouvrir
1611.01390.pdf (1.746Mb)
Type
Article accepté pour publication ou publié
Date
2018
Nom de la revue
Neural Computation
Volume
130
Numéro
12
Éditeur
Massachusetts Institute of Technology
Pages
3355-3392
Identifiant publication
10.1162/neco_a_01142
Métadonnées
Afficher la notice complète
Auteur(s)
Vacher, Jonathan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Meso, Andrew
Institut de Neurosciences de la Timone [INT]
Perrinet, Laurent U. cc
Institut de Neurosciences de la Timone [INT]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
A common practice to account for psychophysical biases in vision is to frame them as consequences of a dynamic process relying on optimal inference with respect to a generative model. The present study details the complete formulation of such a gener-ative model intended to probe visual motion perception with a dynamic texture model. It is first derived in a set of axiomatic steps constrained by biological plausibility. We extend previous contributions by detailing three equivalent formulations of this texture model. First, the composite dynamic textures are constructed by the random ag-gregation of warped patterns, which can be viewed as 3D Gaussian fields. Secondly, these textures are cast as solutions to a stochastic partial differential equation (sPDE). This essential step enables real time, on-the-fly texture synthesis using time-discretized auto-regressive processes. It also allows for the derivation of a local motion-energy model, which corresponds to the log-likelihood of the probability density. The log-likelihoods are essential for the construction of a Bayesian inference framework. We use the dynamic texture model to psychophysically probe speed perception in humans using zoom-like changes in the spatial frequency content of the stimulus. The human data replicates previous findings showing perceived speed to be positively biased by spatial frequency increments. A Bayesian observer who combines a Gaussian likelihood centered at the true speed and a spatial frequency dependent width with a slow speed prior" successfully accounts for the perceptual bias. More precisely, the bias arises from a decrease in the observer's likelihood width estimated from the experiments as the spatial frequency increases. Such a trend is compatible with the trend of the dynamic texture likelihood width."
Mots-clés
Psychophysics; Stochastic Partial Differential Equations; Dynamic textures; Motion perception; Bayesian Modelling

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Biologically Inspired Dynamic Textures for Probing Motion Perception 
    Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2015) Communication / Conférence
  • Vignette de prévisualisation
    Sparse Modeling of Textures 
    Peyré, Gabriel (2009) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Non-negative Sparse Modeling of Textures 
    Peyré, Gabriel (2007) Communication / Conférence
  • Vignette de prévisualisation
    Synthèse de textures dynamiques pour l'étude de la vision en psychophysique et électrophysiologie 
    Vacher, Jonathan (2017-01-18) Thèse
  • Vignette de prévisualisation
    Locally Parallel Textures Modeling with Adapted Hilbert Spaces 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo