• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Weakly localized states for nonlinear Dirac equations

Borrelli, William (2018), Weakly localized states for nonlinear Dirac equations, Calculus of Variations and Partial Differential Equations, 157, 6, p. article: 155. 10.1007/s00526-018-1420-0

View/Open
MasslessDirac-corrected version 2.pdf (367.1Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Calculus of Variations and Partial Differential Equations
Volume
157
Number
6
Publisher
Springer
Pages
article: 155
Publication identifier
10.1007/s00526-018-1420-0
Metadata
Show full item record
Author(s)
Borrelli, William
Abstract (EN)
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks to a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
Subjects / Keywords
mathématiques; nonlinear Dirac equations

Related items

Showing items related by title and author.

  • Thumbnail
    An overview on the standing waves of nonlinear Schroedinger and Dirac equations on metric graphs with localized nonlinearity 
    Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
  • Thumbnail
    L'équation de Dirac en physique du solide et en optique non-lineaire 
    Borrelli, William (2018-10-10) Thèse
  • Thumbnail
    On the nonlinear Dirac equation on noncompact metric graphs 
    Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
  • Thumbnail
    Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity 
    Borrelli, William (2017) Article accepté pour publication ou publié
  • Thumbnail
    Multiple solutions for a self-consistent Dirac equation in two dimensions 
    Borrelli, William (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo