Show simple item record

hal.structure.identifier
dc.contributor.authorBrucker, François*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorBertrand, Patrice*
dc.date.accessioned2009-09-21T13:24:07Z
dc.date.available2009-09-21T13:24:07Z
dc.date.issued2007
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/1823
dc.language.isoenen
dc.subjectCluster Analysis, Covering, Sub-dominant ultrametric
dc.subject.ddc519en
dc.titleOn Lower-Maximal Paired-Ultrametrics
dc.typeChapitre d'ouvrage
dc.contributor.editoruniversityotherENST Bretagne, Dept Lussi;France
dc.description.abstractenThe weakly indexed paired-hierarchies (shortly, p-hierarchies) providea clustering model that allows overlapping clusters and extends the hierarchicalmodel. There exists a bijection between weakly indexed p-hierarchies and the so-called paired-ultrametrics (shortly, p-ultrametrics), this correspondence being a re-striction of the bijection between weakly indexed pyramids and Robinsonian dis-similarities. This paper proposes a generalization of the well-known HAC clusteringmethod to compute a weakly indexed p-hierarchy from a given dissimilarity d. More-over, the p-ultrametric associated to such a weakly indexed p-hierarchy is provedto be lower-maximal for d and larger than the sub-dominant ultrametric of d.
dc.identifier.citationpages455-464
dc.relation.ispartoftitleSelected Contributions in Data Analysis and Classification
dc.relation.ispartofeditorBrito, P., Cucumel, G., Bertrand, P., De Carvalho, F.
dc.relation.ispartofpublnameSpringer
dc.relation.ispartofpublcityBerlin Heidelberg
dc.relation.ispartofdate2007
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.ispartofisbn978-3-540-73558-8
dc.description.ssrncandidatenon
dc.description.halcandidateoui
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2019-09-17T13:13:52Z
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record