
Flow-Aware Workload Migration in Data Centers
Desmouceaux, Yoann; Toubaline, Sónia; Clausen, Thomas (2018), Flow-Aware Workload Migration in Data Centers, Journal of Network and Systems Management, 26, 4, p. 1034-1057. 10.1007/s10922-018-9452-5
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2018Nom de la revue
Journal of Network and Systems ManagementVolume
26Numéro
4Pages
1034-1057
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Desmouceaux, YoannLaboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Cisco Systems France
Toubaline, Sónia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Clausen, Thomas

Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Résumé (EN)
In data centers, subject to workloads with heterogeneous (and sometimes short) lifetimes, workload migration is a way of attaining a more efficient utilization of the underlying physical machines. To not introduce performance degradation, such workload migration must take into account not only machine resources, and per-task resource requirements, but also application dependencies in terms of network communication. This paper presents a workload migration model capturing all of these constraints. A linear programming framework is developed allowing accurate representation of per-task resources requirements and inter-task network demands. Using this, a multi-objective problem is formulated to compute a re-allocation of tasks that (1) maximizes the total inter-task throughput, while (2) minimizing the cost incurred by migration and (3) allocating the maximum number of new tasks. A baseline algorithm, solving this multi-objective problem using the ε-constraint method is proposed, in order to generate the set of Pareto-optimal solutions. As this algorithm is compute-intensive for large topologies, a heuristic, which computes an approximation of the Pareto front, is then developed, and evaluated on different topologies and with different machine load factors. These evaluations show that the heuristic can provide close-to-optimal solutions, while reducing the solving time by one to two order of magnitudes.Mots-clés
Data center networking; VM migration; Application-aware allocation; MILP; Multi-objective optimization; Pareto optimalityPublications associées
Affichage des éléments liés par titre et auteur.
-
Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2010) Communication / Conférence
-
Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2013) Article accepté pour publication ou publié
-
Couëtoux, Basile; Monnot, Jérôme; Toubaline, Sónia (2012) Communication / Conférence
-
Bazgan, Cristina; Toubaline, Sónia; Tuza, Zsolt (2011) Communication / Conférence
-
Borrion, Hervé; Bordeanu, Octavian Ciprian; Toubaline, Sonia (2019) Chapitre d'ouvrage