• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Transfer Between Invariant Manifolds: From Impulse Transfer to Low-Thrust Transfer

Chupin, Maxime; Haberkorn, Thomas; Trélat, Emmanuel (2018), Transfer Between Invariant Manifolds: From Impulse Transfer to Low-Thrust Transfer, Journal of Guidance, Control, and Dynamics, 41, 3, p. 658--672. 10.2514/1.G002922

Type
Article accepté pour publication ou publié
External document link
https://hal.inria.fr/hal-01494042
Date
2018
Journal name
Journal of Guidance, Control, and Dynamics
Volume
41
Number
3
Pages
658--672
Publication identifier
10.2514/1.G002922
Metadata
Show full item record
Author(s)
Chupin, Maxime cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Haberkorn, Thomas
Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
Trélat, Emmanuel
Laboratoire Jacques-Louis Lions [LJLL]
Abstract (EN)
In this work, a new robust and fast method is developed to perform transfers that minimize fuel consumption between two invariant manifolds of periodic orbits in the circular restricted three-body problem. The method starts with an impulse transfer between two invariant manifolds to build an optimal control problem. This allows to choose an adequate fixed transfer time. Using the Pontryagin maximum principle, the resolution of the problem is formulated as that of finding the zero of a shooting function (indirect method). The algorithm couples different kinds of continuations (on cost, final state, and thrust) to improve robustness and to initialize the solver. The efficiency of the method is illustrated with numerical examples. Finally, the influence of the transfer time is studied numerically thanks to a continuation on this parameter, and it checks that, when transfer duration goes to zero, the control converges to the impulse transfer that it started with. It shows the robustness of the method and establishes a mathematical link between the two problems.Read More: https://arc.aiaa.org/doi/10.2514/1.G002922
Subjects / Keywords
low-thrust transfer; invariant manifolds; CRTBP; continuation method; optimal control

Related items

Showing items related by title and author.

  • Thumbnail
    Low-Thrust Lyapunov to Lyapunov and Halo to Halo with L2 -Minimization 
    Chupin, Maxime; Haberkorn, Thomas; Trélat, Emmanuel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Convergence analysis of adaptive DIIS algorithms with application to electronic ground state calculations 
    Chupin, Maxime; Dupuy, Mi-Song; Legendre, Guillaume; Séré, Eric (2021) Article accepté pour publication ou publié
  • Thumbnail
    LuaLaTeX pour les non sorciers, deux exemples 
    Chupin, Maxime; Chupin, Maxime (2010) Article accepté pour publication ou publié
  • Thumbnail
    Do return migrants transfer political norms to their origin country? Evidence from Mali 
    Chauvet, Lisa; Mercier, Marion (2014) Article accepté pour publication ou publié
  • Thumbnail
    Variational methods in imaging and geometric control 
    Bergounioux, Maïtine; Peyré, Gabriel; Schnörr, Christoph; Caillau, Jean-Baptiste; Haberkorn, Thomas (2017-01) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo