Show simple item record

hal.structure.identifierMathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
hal.structure.identifierLaboratoire de Mathématiques et Applications de Metz [LMAM]
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorAlabau-Boussouira, Fatiha
hal.structure.identifierDivision du génie et des sciences appliquées
dc.contributor.authorBrockett, Roger
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorGlass, Olivier
hal.structure.identifierMathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
dc.contributor.authorLe Rousseau, Jérôme
HAL ID: 2249
hal.structure.identifierBasque Center for Applied Mathematics [BCAM]
dc.contributor.authorZuazua, Enrique
HAL ID: 10801
dc.date.accessioned2018-09-11T12:48:48Z
dc.date.available2018-09-11T12:48:48Z
dc.date.issued2012
dc.identifier.isbn978-3-642-27892-1en
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17995
dc.language.isoenen
dc.subjectcontrol theoryen
dc.subjectpartial differential equationsen
dc.subject.ddc519en
dc.titleControl of partial differential equationsen
dc.title.alternativeCetraro, Italy 2010, Editors: Piermarco Cannarsa, Jean-Michel Coronen
dc.typeOuvrage
dc.description.abstractenThe term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010. Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a friendly introduction to, and an updated account of, some of the most active trends in current research.en
dc.publisher.nameSpringeren
dc.publisher.cityBerlinen
dc.relation.ispartofseriestitleC.I.M.E. Foundation Subseriesen
dc.relation.ispartofseriesnumber2048en
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.identifier.citationdate2012
dc.relation.forthcomingnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2018-09-11T12:43:21Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record