• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Optimality conditions (In Pontryagin form)

Aronna, Maria Soledad; Tonon, Daniela; Boccia, Andrea; Campos, Cédric Martínez; Mazzola, Marco; Nguyen, Luong Van; Palladino, Michele; Scarinci, Teresa; Silva, Francisco J. (2017), Optimality conditions (In Pontryagin form), in Daniela Tonon, Maria Soledad Aronna, Dante Kalise, Optimal Control: Novel Directions and Applications, Springer Berlin Heidelberg : Berlin, p. 1-125. 10.1007/978-3-319-60771-9_1

Type
Chapitre d'ouvrage
Date
2017
Book title
Optimal Control: Novel Directions and Applications
Book author
Daniela Tonon, Maria Soledad Aronna, Dante Kalise
Publisher
Springer Berlin Heidelberg
Published in
Berlin
ISBN
978-3-319-60770-2
Pages
1-125
Publication identifier
10.1007/978-3-319-60771-9_1
Metadata
Show full item record
Author(s)
Aronna, Maria Soledad
FGV-EPGE
Tonon, Daniela
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Boccia, Andrea
Department of Electrical and Electronic Engineering [London] [DEEE]
Campos, Cédric Martínez
Universidad de Valladolid
Mazzola, Marco
Institut de Mathématiques de Jussieu [IMJ]
Nguyen, Luong Van

Palladino, Michele
Department of Mathematics [Penn State University]
Scarinci, Teresa
Department of Statistics and Operation Research
Silva, Francisco J.
XLIM [XLIM]
Abstract (EN)
This chapter aims at being a friendly presentation of various results related to optimality conditions of Optimal Control problems. Different classes of systems are considered, such as equations with time delays and/or state constraints, dynamics affine with respect to the control variables, problems governed by partial differential equations and systems arising from Classical Mechanics, among others.
Subjects / Keywords
Optimal Control problems

Related items

Showing items related by title and author.

  • Thumbnail
    The planning problem in mean field games as regularizedmass transport 
    Graber, Philip Jameson; Mészáros, Alpár Richárd; Silva, Francisco J.; Tonon, Daniela (2019) Article accepté pour publication ou publié
  • Thumbnail
    The Goh necessary optimality conditions for the Mayer problem with control constraints 
    Frankowska, Hélène; Tonon, Daniela (2013) Communication / Conférence
  • Thumbnail
    Time-dependent focusing Mean-Field Games: the sub-critical case 
    Cirant, Marco; Tonon, Daniela (2019) Article accepté pour publication ou publié
  • Thumbnail
    Up-scaling innovations in an interdependent, costly, and regulatory-uncertain environment : the case of the mobility ecosystem 
    Aguilar Rojas, Maria Teresa (2022-07-11) Thèse
  • Thumbnail
    Optimal Control: Novel Directions and Applications 
    Tonon, Daniela; Aronna, Maria Soledad; Kalise, Dante (2017) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo