• français
    • English
  • français 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

Thumbnail
View/Open
guefi.pdf (385.7Kb)
Date
2018
Collection title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Link to item file
https://hal.archives-ouvertes.fr/hal-01781502
Dewey
Probabilités et mathématiques appliquées
Sujet
Boltzmann–Gibbs measure; Gaussian unitary ensemble; Random matrix theory; Spectral analysis; Geometric functional analysis; Log-concave measure; Poincaré inequality; Logarithmic Sobolev inequality; Concentration of measure; Diffusion operator; Orthogonal polynomials
URI
https://basepub.dauphine.fr/handle/123456789/17979
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Chafaï, Djalil
Lehec, Joseph
Type
Document de travail / Working paper
Item number of pages
19
Abstract (EN)
This note, mostly expository, is devoted to Poincaré and logarithmic Sobolev inequalities for a class of singular Boltzmann-Gibbs measures. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from the convexity of confinement and interaction. We prove optimality in the case of quadratic confinement by using a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gauss-ian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics which admits the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the McKean-Vlasov mean-field limit of the dynamics, as well as the consequence of the logarithmic Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.