Show simple item record

dc.contributor.authorBoyer, Claire
dc.contributor.authorChambolle, Antonin
dc.contributor.authorDe Castro, Yohann
dc.contributor.authorDuval, Vincent
dc.contributor.authorDe Gournay, Frédéric
dc.contributor.authorWeiss, Pierre
dc.date.accessioned2018-09-06T08:42:20Z
dc.date.available2018-09-06T08:42:20Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17965
dc.language.isoenen
dc.subjectRepresenter theo- remen
dc.subjectTotal variationen
dc.subjectRepresenter theoremen
dc.subjectInverse problemsen
dc.subjectConvex regularizationen
dc.subjectVector spaceen
dc.subject.ddc515en
dc.titleOn Representer Theorems and Convex Regularizationen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe establish a general principle which states that regularizing an inverse problem with a convex function yields solutions which are convex combinations of a small number of atoms. These atoms are identified with the extreme points and elements of the extreme rays of the regularizer level sets. An extension to a broader class of quasi-convex regularizers is also discussed. As a side result, we characterize the minimizers of the total gradient variation, which was still an unresolved problem.en
dc.identifier.citationpages29en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01823135en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2018-07
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2018-09-06T08:33:51Z
hal.person.labIds506273
hal.person.labIds17
hal.person.labIds40
hal.person.labIds60
hal.person.labIds1954
hal.person.labIds184934


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record