• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Résolution exacte du Problème de Coloration de Graphe et ses variantes

Exact algorithms for the Vertex Coloring Problem and its generalisations

Thumbnail
Ouvrir
2017PSLED060.pdf (1.241Mb)
Date
2017-11-21
Indexation documentaire
Recherche opérationnelle
Subject
Coloration de graphe; Dsatur; Séparation et Evaluation; Programmation Linéaire en Nombres Entiers; Génération de colonnes; Algorithme de génération de colonnes et branchement; Graph Coloring; Dsatur; Branch and Bound; Integer Linear Programming; Column Generation; Branch-And-Price
URI
https://basepub.dauphine.fr/handle/123456789/17964
Collections
  • LAMSADE : Thèses
Métadonnées
Afficher la notice complète
Auteur
Ternier, Ian-Christopher
Directeur de thèse
Gabrel, Virginie
Type
Thèse
Résumé en français
Dans un graphe non orienté, le Problème de Coloration de Graphe (PCG) consiste à assigner à chaque sommet du graphe une couleur de telle sorte qu'aucune paire de sommets adjacents n'aient la même couleur et le nombre total de couleurs est minimisé. DSATUR est un algorithme exact efficace pour résoudre le PCG. Un de ses défauts est qu'une borne inférieure est calculée une seule fois au noeud racine de l'algorithme de branchement, et n'est jamais mise à jour. Notre nouvelle version de DSATUR surpasse l'état de l'art pour un ensemble d'instances aléatoires à haute densité, augmentant significativement la taille des instances résolues. Nous étudions trois formulations PLNE pour le Problème de la Somme Chromatique Minimale (PSCM). Chaque couleur est représentée par un entier naturel. Le PSCM cherche à minimiser la somme des cardinalités des sous-ensembles des sommets recevant la même couleur, pondérés par l'entier correspondant à la couleur, de telle sorte que toute paire de sommets adjacents reçoive des couleurs différentes. Nous nous concentrons sur l'étude d'une formulation étendue et proposons un algorithme de Branch-and-Price.
Résumé en anglais
Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph such that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR is an effective exact algorithm for the VCP. We introduce new lower bounding techniques enabling the computing of a lower bound at each node of the branching scheme. Our new DSATUR outperforms the state of the art for random VCP instances with high density, significantly increasing the size of solvable instances. Similar results can be achieved for a subset of high density DIMACS instances. We study three ILP formulations for the Minimum Sum Coloring Problem (MSCP). The problem is an extension of the classical Vertex Coloring Problem in which each color is represented by a positive natural number. The MSCP asks to minimize the sum of the cardinality of subsets of vertices receiving the same color, weighted by the index of the color, while ensuring that vertices linked by an edge receive different colors. We focus on studying an extended formulation and devise a complete Branch-and-Price algorithm.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.