• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Embedding Camassa-Holm equations in incompressible Euler

Natale, Andrea; Vialard, François-Xavier (2019), Embedding Camassa-Holm equations in incompressible Euler, Journal of Geometric Mechanics, 11, 2, p. 205-223. 10.3934/jgm.2019011

View/Open
CH computational_v1.pdf (384.6Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Journal of Geometric Mechanics
Volume
11
Number
2
Pages
205-223
Publication identifier
10.3934/jgm.2019011
Metadata
Show full item record
Author(s)
Natale, Andrea
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this article, we show how to embed the so-called CH2 equations into the geodesic flow of the Hdiv metric in 2D, which, itself, can be embedded in the incompressible Euler equation of a non compact Riemannian manifold. The method consists in embedding the incompressible Euler equation with a potential term coming from classical mechanics into incompressible Euler of a manifold and seeing the CH2 equation as a particular case of such fluid dynamic equation.
Subjects / Keywords
Eisenhart lift; Incompressible Euler equation; Camassa-Holm equation; Dimension theory, Poincaré recurrences, multifractal analysis

Related items

Showing items related by title and author.

  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    Generalized compressible fluid flows and solutions of the Camassa-Holm variational model 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Metric completion of Diff([0,1]) with the H1 right-invariant metric 
    Di Marino, Simone; Natale, Andrea; Tahraoui, Rabah; Vialard, François-Xavier (2019-06) Document de travail / Working paper
  • Thumbnail
    Generalized compressible flows and solutions of the H(div) geodesic problem 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
  • Thumbnail
    Simultaneous Fine and Coarse Diffeomorphic Registration: Application to Atrophy Measurement in Alzheimer’s Disease 
    Rueckert, Daniel; Holm, Darryl; Wolz, Robin; Vialard, François-Xavier; Risser, Laurent (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo