• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Generalized compressible fluid flows and solutions of the Camassa-Holm variational model

Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018), Generalized compressible fluid flows and solutions of the Camassa-Holm variational model. https://basepub.dauphine.fr/handle/123456789/17940

View/Open
RelaxationCamassaHolm_v2(1).pdf (742.4Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-01815531
Date
2018
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
28
Metadata
Show full item record
Author(s)
Gallouët, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Natale, Andrea
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The Camassa-Holm equation on a domain M ⊂ Rd , in one of its possible multi-dimensional generalizations, describes geodesics on the group of diffeomorphisms with respect to the H(div) metric. It has been recently reformulated as a geodesic equation for the L2 metric on a subgroup of the diffeomorphism group of the cone over M. We use such an interpretation to construct an analogue of Brenier's generalized incompressible Euler flows for the Camassa-Holm equation. This involves describing the fluid motion using probability measures on the space of paths on the cone, so that particles are allowed to split and cross. Differently from Brenier's model, however, we are also able to account for compressibility by employing an explicit probabilistic representation of the Jacobian of the flow map. We formulate the boundary value problem associated to the Camassa-Holm equation using such generalized flows. We prove existence of solutions and that, for short times, smooth solutions of the Camassa-Holm equations are the unique solutions of our model. We propose a numerical scheme to construct generalized solutions on the cone and present some numerical results illustrating the relation between the generalized Camassa-Holm and incompressible Euler solutions.
Subjects / Keywords
Camassa-Holm equation; fluid flows

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized compressible flows and solutions of the H(div) geodesic problem 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    Embedding Camassa-Holm equations in incompressible Euler 
    Natale, Andrea; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow 
    Gallouët, Thomas; Mérigot, Quentin; Natale, Andrea (2022) Article accepté pour publication ou publié
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo