hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Roche, Angelina | |
dc.date.accessioned | 2018-09-04T09:24:09Z | |
dc.date.available | 2018-09-04T09:24:09Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17935 | |
dc.language.iso | en | en |
dc.subject | Lasso method | en |
dc.subject.ddc | 519 | en |
dc.title | Variable selection and estimation in multivariate functional linear regression via the Lasso | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | In more and more applications, a quantity of interest may depend on several covariates, with at least one of them infinite-dimensional (e.g. a curve). To select relevant covariate in this context, we propose an adaptation of the Lasso method. The criterion is based on classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici et al., 2011). We give properties of the solution in our infinite-dimensional context. A sparsity-oracle inequality is shown and we propose a coordinate-wise descent algorithm, inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study on simulated and experimental datasets illustrates the behavior of the method. | en |
dc.identifier.citationpages | 21 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris-Dauphine | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.identifier.citationdate | 2018-03 | |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2018-09-04T09:21:31Z | |
hal.author.function | aut | |