• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model

Thumbnail
View/Open
1505.04969.pdf (224.3Kb)
Date
2015
Publisher city
Paris
Publisher
Cahier du LAMSADE
Publishing date
2015
Collection title
Cahier du LAMSADE
Dewey
Probabilités et mathématiques appliquées
Sujet
Computational Complexity
URI
https://basepub.dauphine.fr/handle/123456789/17931
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Bourgeois, N.
Catellier, Rémi
Denat, T.
Paschos, Vangelis
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Document de travail / Working paper
Abstract (EN)
We study average-case complexity of branch-and-bound for maximum independent set in random graphs under the $\mathcal{G}(n,p)$ distribution. In this model every pair $(u,v)$ of vertices belongs to $E$ with probability $p$ independently on the existence of any other edge. We make a precise case analysis, providing phase transitions between subexponential and exponential complexities depending on the probability $p$ of the random model.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.