• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fractional Fokker-Planck Equation with General Confinement Force

Lafleche, Laurent (2020), Fractional Fokker-Planck Equation with General Confinement Force, SIAM Journal on Mathematical Analysis, 52, 1, p. 31. 10.1137/18M1188331

View/Open
ffp.pdf (498.7Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
SIAM Journal on Mathematical Analysis
Volume
52
Number
1
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
31
Publication identifier
10.1137/18M1188331
Metadata
Show full item record
Author(s)
Lafleche, Laurent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This article studies a Fokker-Planck type equation of fractional diffusion with conservative drift ∂f/∂t = ∆^(α/2) f + div(Ef), where ∆^(α/2) denotes the fractional Laplacian and E is a confining force field. The main interest of the present paper is that it applies to a wide variety of force fields, with a few local regularity and a polynomial growth at infinity. We first prove the existence and uniqueness of a solution in weighted Lebesgue spaces depending on E under the form of a strongly continuous semigroup. We also prove the existence and uniqueness of a stationary state, by using an appropriate splitting of the fractional Laplacian and by proving a weak and strong maximum principle. We then study the rate of convergence to equilibrium of the solution. The semigroup has a property of regularization in fractional Sobolev spaces, as well as a gain of integrability and positivity which we use to obtain polynomial or exponential convergence to equilibrium in weighted Lebesgue spaces.
Subjects / Keywords
fractional Laplacian; Fokker-Planck; fractional diffusion with drift; confinement force; asymptotic behavior

Related items

Showing items related by title and author.

  • Thumbnail
    The Fokker-Planck equation with subcritical confinement force 
    Kavian, Otared; Mischler, Stéphane; Ndaoud, Mohamed (2021) Article accepté pour publication ou publié
  • Thumbnail
    The kinetic Fokker-Planck equation with general force 
    Cao, Chuqi (2021) Article accepté pour publication ou publié
  • Thumbnail
    Fractional Fokker-Planck equation 
    Tristani, Isabelle (2015) Article accepté pour publication ou publié
  • Thumbnail
    Uniform semigroup spectral analysis of the discrete, fractional & classical Fokker-Planck equations 
    Mischler, Stéphane; Tristani, Isabelle (2015) Document de travail / Working paper
  • Thumbnail
    Equations de Fokker-Planck cinétiques : hypocoercivité et hypoellipticité 
    Cao, Chuqi (2019-10-10) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo