Afficher la notice abrégée

dc.contributor.authorRicaud, Julien
dc.subjectThomas–Fermi–Dirac–von Weizsäcker modelen
dc.subjectSchrödinger equationen
dc.titleSymmetry breaking in the periodic Thomas–Fermi–Dirac–von Weizsäcker modelen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe consider the Thomas--Fermi--Dirac--von~Weizsäcker model for a system composed of infinitely many nuclei placed on a periodic lattice and electrons with a periodic density. We prove that if the Dirac constant is small enough, the electrons have the same periodicity as the nuclei. On the other hand if the Dirac constant is large enough, the 2-periodic electronic minimizer is not 1-periodic, hence symmetry breaking occurs. We analyze in detail the behavior of the electrons when the Dirac constant tends to infinity and show that the electrons all concentrate around exactly one of the 8 nuclei of the unit cell of size 2, which is the explanation of the breaking of symmetry. Zooming at this point, the electronic density solves an effective nonlinear Schrödinger equation in the whole space with nonlinearity $u^{7/3}-u^{4/3}$. Our results rely on the analysis of this nonlinear equation, in particular on the uniqueness and non-degeneracy of positive solutions.en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.subject.ddclabelSciences connexes (physique, astrophysique)en

Fichiers attachés à cette notice


Il n'y a pas de fichiers associés à cette notice.

Ce document fait partie de la (des) collection(s) suivante(s)

Afficher la notice abrégée