Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorFurlan, Marco*
hal.structure.identifierHausdorff Center for Mathematics and Institute for Numerical Simulation - University of Bonn
hal.structure.identifier
dc.contributor.authorGubinelli, Massimiliano*
dc.date.accessioned2018-03-09T14:52:08Z
dc.date.available2018-03-09T14:52:08Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17537
dc.language.isoenen
dc.subjectweak universalityen
dc.subjectparacontrolled distributionsen
dc.subjectstochastic quantisation equationen
dc.subjectMalliavin calculusen
dc.subjectpartial chaos expansionen
dc.subject.ddc515en
dc.titleWeak universality for a class of 3d stochastic reaction-diffusion models.en
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe establish the large scale convergence of a class of stochastic weakly nonlinear reaction-diffusion models on a three dimensional periodic domain to the dynamic Phi^3_4 model within the framework of paracontrolled distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of smoothness (in particular C^9 is enough). We use the Malliavin calculus to perform a partial chaos expansion of the stochastic terms and control their L^p norms in terms of the graphs of the standard Phi^3_4 stochastic terms.en
dc.relation.isversionofjnlnameProbability Theory and Related Fields
dc.relation.isversionofjnldate2018
dc.relation.isversionofdoi10.1007/s00440-018-0849-6
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01615822en
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2018-03-09T14:47:53Z
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record