Weak universality for a class of 3d stochastic reaction-diffusion models.
Furlan, Marco; Gubinelli, Massimiliano (2018), Weak universality for a class of 3d stochastic reaction-diffusion models., Probability Theory and Related Fields. 10.1007/s00440-018-0849-6
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01615822Date
2018Journal name
Probability Theory and Related FieldsPublisher
Springer
Publication identifier
Metadata
Show full item recordAuthor(s)
Furlan, MarcoCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Gubinelli, Massimiliano
Hausdorff Center for Mathematics and Institute for Numerical Simulation - University of Bonn
Abstract (EN)
We establish the large scale convergence of a class of stochastic weakly nonlinear reaction-diffusion models on a three dimensional periodic domain to the dynamic Phi^3_4 model within the framework of paracontrolled distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of smoothness (in particular C^9 is enough). We use the Malliavin calculus to perform a partial chaos expansion of the stochastic terms and control their L^p norms in terms of the graphs of the standard Phi^3_4 stochastic terms.Subjects / Keywords
weak universality; paracontrolled distributions; stochastic quantisation equation; Malliavin calculus; partial chaos expansionRelated items
Showing items related by title and author.
-
Furlan, Marco; Gubinelli, Massimiliano (2019) Article accepté pour publication ou publié
-
Russo, Francesco; Flandoli, Franco; Gubinelli, Massimiliano (2009) Article accepté pour publication ou publié
-
Furlan, Marco; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
-
Priola, Enrico; Gubinelli, Massimiliano; Flandoli, Franco (2011) Article accepté pour publication ou publié
-
Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié