• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Weak universality for a class of 3d stochastic reaction-diffusion models.

Thumbnail
Date
2018
Link to item file
https://hal.archives-ouvertes.fr/hal-01615822
Dewey
Analyse
Sujet
weak universality; paracontrolled distributions; stochastic quantisation equation; Malliavin calculus; partial chaos expansion
Journal issue
Probability Theory and Related Fields
Publication date
2018
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00440-018-0849-6
URI
https://basepub.dauphine.fr/handle/123456789/17537
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Furlan, Marco
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Gubinelli, Massimiliano
89615 Hausdorff Center for Mathematics and Institute for Numerical Simulation - University of Bonn
37507 Institute for Applied Mathematics [INSTITUTE FOR APPLIED MATHEMATICS UNIVERSITAT BONN]
Type
Article accepté pour publication ou publié
Abstract (EN)
We establish the large scale convergence of a class of stochastic weakly nonlinear reaction-diffusion models on a three dimensional periodic domain to the dynamic Phi^3_4 model within the framework of paracontrolled distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of smoothness (in particular C^9 is enough). We use the Malliavin calculus to perform a partial chaos expansion of the stochastic terms and control their L^p norms in terms of the graphs of the standard Phi^3_4 stochastic terms.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.