Random walk on a perturbation of the infinitely-fast mixing interchange process
Salvi, Michele; Simenhaus, François (2017), Random walk on a perturbation of the infinitely-fast mixing interchange process. https://basepub.dauphine.fr/handle/123456789/17528
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01619895Date
2017Titre de la collection
Cahier de recherche CEREMADE, Université Paris-DauphinePages
22
Métadonnées
Afficher la notice complèteRésumé (EN)
We consider a random walk in dimension d ≥ 1 in a dynamic random environment evolving as an interchange process with rate γ > 0. We only assume that the annealed drift is non–zero. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker Xt/ t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ = +∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of [HS15], where the environment was given by the 1–dimensional exclusion process: (i) We deal with any dimension d ≥ 1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law µ; (iii) We show that X t t is not only in the same direction of the annealed drift, but that it is also close to it. AMS subject classification (2010 MSC): 60K37, 82C22, 60Fxx, 82D30.Mots-clés
Random walk; dynamic random environment; interchange process; limit theorems; renormalisationPublications associées
Affichage des éléments liés par titre et auteur.
-
Salvi, Michele; Simenhaus, François (2018) Article accepté pour publication ou publié
-
A limit theorem for the survival probability of a simple random walk among power-law renewal traps Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
-
Poisat, Julien; Simenhaus, François (2020) Article accepté pour publication ou publié
-
Berger, Quentin; Salvi, Michele (2020) Article accepté pour publication ou publié
-
Huveneers, François; Simenhaus, François (2015) Article accepté pour publication ou publié