• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Random walk on a perturbation of the infinitely-fast mixing interchange process

Salvi, Michele; Simenhaus, François (2017), Random walk on a perturbation of the infinitely-fast mixing interchange process. https://basepub.dauphine.fr/handle/123456789/17528

Type
Document de travail / Working paper
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01619895
Date
2017
Titre de la collection
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
22
Métadonnées
Afficher la notice complète
Auteur(s)
Salvi, Michele

Simenhaus, François
Résumé (EN)
We consider a random walk in dimension d ≥ 1 in a dynamic random environment evolving as an interchange process with rate γ > 0. We only assume that the annealed drift is non–zero. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker Xt/ t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ = +∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of [HS15], where the environment was given by the 1–dimensional exclusion process: (i) We deal with any dimension d ≥ 1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law µ; (iii) We show that X t t is not only in the same direction of the annealed drift, but that it is also close to it. AMS subject classification (2010 MSC): 60K37, 82C22, 60Fxx, 82D30.
Mots-clés
Random walk; dynamic random environment; interchange process; limit theorems; renormalisation

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process 
    Salvi, Michele; Simenhaus, François (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    A limit theorem for the survival probability of a simple random walk among power-law renewal traps 
    Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
  • Vignette de prévisualisation
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2020) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Scaling of sub-ballistic 1D Random Walks among biased Random Conductances: a story of wells and walls 
    Berger, Quentin; Salvi, Michele (2020) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Random walk driven by simple exclusion process 
    Huveneers, François; Simenhaus, François (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo