Scaling of sub-ballistic 1D Random Walks among biased Random Conductances
Date
2017Collection title
Cahier de recherche CEREMADE, Université Paris-DauphineLink to item file
https://hal.archives-ouvertes.fr/hal-01635371Dewey
Probabilités et mathématiques appliquéesSujet
Random walk; Random environment; Limit theorems; Conductance model; Mott random walkCollections
Metadata
Show full item recordAuthor
Berger, Quentin
102 Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Salvi, Michele
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Type
Item number of pages
12Abstract (EN)
We consider two models of one-dimensional random walks among biased i.i.d. random conductances: the first is the classical exponential tilt of the conductances, while the second comes from the effect of adding an external field to a random walk on a point process (the bias depending on the distance between points). We study the case when the walk is transient to the right but sub-ballistic, and identify the correct scaling of the random walk: we find α∈[0,1] such that logXn/logn→α. Interestingly, α does not depend on the intensity of the bias in the first case, but it does in the second case.Related items
Showing items related by title, author, creator and subject.
-
Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model
Sabot, Christophe; Tarres, Pierre (2015) Article accepté pour publication ou publié -
A limit theorem for the survival probability of a simple random walk among power-law renewal traps
Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper -
A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles
Poisat, Julien; Simenhaus, François (2019) Article accepté pour publication ou publié