Einstein relation and linear response in one-dimensional Mott variable-range hopping
Faggionato, Alessandra; Gantert, Nina; Salvi, Michèle (2019), Einstein relation and linear response in one-dimensional Mott variable-range hopping, Annales de l'Institut Henri Poincaré, Probabilités et statistiques, 55, 3, p. 1477-1508. 10.1214/18-AIHP925
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Annales de l'Institut Henri Poincaré, Probabilités et statistiquesVolume
55Number
3Publisher
Institute of Mathematical Statistics
Pages
1477-1508
Publication identifier
Metadata
Show full item recordAuthor(s)
Faggionato, AlessandraGantert, Nina
Lehrstuhl fur Warscheinlichkeitstheorie
Salvi, Michèle
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider one-dimensional Mott variable-range hopping with a bias, and prove the linear response as well as the Einstein relation, under an assumption on the exponential moments of the distances between neighboring points. In a previous paper \cite{FGS} we gave conditions on ballisticity, and proved that in the ballistic case the environment viewed from the particle approaches, for almost any initial environment, a given steady state which is absolutely continuous with respect to the original law of the environment. Here, we show that this bias--dependent steady state has a derivative at zero in terms of the bias (linear response), and use this result to get the Einstein relation. Our approach is new: instead of using e.g. perturbation theory or regeneration times, we show that the Radon-Nikodym derivative of the bias--dependent steady state with respect to the equilibrium state in the unbiased case satisfies an Lp-bound, p>2, uniformly for small bias. This Lp-bound yields, by a general argument not involving our specific model, the statement about the linear response.Subjects / Keywords
Mott variable-range hopping; random walk in random environment; randomconductance model; environment seen from the particle; steady states; linear response; Einstein relationRelated items
Showing items related by title and author.
-
Faggionato, Alessandra; Gantert, Nina; Salvi, Michele (2018) Article accepté pour publication ou publié
-
Huveneers, François (2018) Article accepté pour publication ou publié
-
Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
-
Lepri, Stefano; Delfini, L.; Livi, Roberto; Basile, Giada; Olla, Stefano (2007) Article accepté pour publication ou publié
-
Monneau, Régis; Blanchet, Adrien; Dolbeault, Jean (2005) Chapitre d'ouvrage