• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Optimal quadratic unbiased estimation for models with linear Toeplitz covariance structure

Marin, Jean-Michel; Dhorne, Thierry, Optimal quadratic unbiased estimation for models with linear Toeplitz covariance structure, Statistics. A journal of Theoretical and Applied Statistics, 37, 2, p. 85-99. 10.1080/02331880290015468

Type
Article accepté pour publication ou publié
Journal name
Statistics. A journal of Theoretical and Applied Statistics
Volume
37
Number
2
Publisher
Taylor & Francis
Pages
85-99
Publication identifier
10.1080/02331880290015468
Metadata
Show full item record
Author(s)
Marin, Jean-Michel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dhorne, Thierry
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (UMR 3192) [Lab-STICC]
Abstract (EN)
This paper deals with the problem of quadratic unbiased estimation for models with linear Toeplitz covariance structure. These serial covariance models are very useful to modelize time or spatial correlations by means of linear models. Optimality and local optimality is examined in different ways. For the nested Toeplitz models, it is shown that there does not exist a Uniformly Minimum Variance Quadratic Unbiased Estimator for at least one linear combination of covariance parameters. Moreover, empirical unbiased estimators are identified as Locally Minimum Variance Quadratic Unbiased Estimators for a particular choice on covariance parameters corresponding to the case where the covariance matrix of the observed random vector is proportional to the identity matrix. The complete Toeplitz-circulant model is also studied. For this model, the existence of a Uniformly Minimum Variance Quadratic Unbiased Estimator for each covariance parameter is proved.
Subjects / Keywords
Special Jordan Algebras; Mivque; Toeplitz Covariance; Optimal Linear Estimation

Related items

Showing items related by title and author.

  • Thumbnail
    Linear Toeplitz covariance structure models with optimal estimators of variance components 
    Marin, Jean-Michel; Dhorne, Thierry Article accepté pour publication ou publié
  • Thumbnail
    Estimation of Variance Components for a Linear Toeplitz Model 
    Marin, Jean-Michel (2007) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Modélisation bayésienne hiérarchique pour l'estimation de matrice de covariance - Application à la gestion actif-passif de portefeuilles financiers 
    Bourgia, Mathilde; Féron, Olivier; Marin, Jean-Michel; Robert, Christian P. (2010) Communication / Conférence
  • Thumbnail
    Bayesian Estimation of a Covariance Matrix: Application for Asset and Liabiliy Management 
    Marin, Jean-Michel; Féron, Olivier; Bouriga, Mathilde; Robert, Christian P. (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo