
Hydrodynamic limit for a zero-range process in the Sierpinski gasket
Jara, Milton, Hydrodynamic limit for a zero-range process in the Sierpinski gasket, Communications in Mathematical Physics;0010-3616, 288, 2, p. 773–797. 10.1007/s00220-009-0746-z
View/ Open
Type
Article accepté pour publication ou publiéJournal name
Communications in Mathematical Physics;0010-3616Volume
288Number
2Publisher
Springer
Pages
773–797
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a system of random walks on graph approximations of the Sierpinski gasket, coupled with a zero-range interaction. We prove that the hydrodynamic limit of this system is given by a nonlinear heat equation on the Sierpinski gasket.Subjects / Keywords
Hydrodynamic Equation; Invariant Measure; Green Function; Harmonic Function; Weak SolutionRelated items
Showing items related by title and author.
-
Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
-
Gonçalves, Patricia; Jara, Milton (2009) Article accepté pour publication ou publié
-
Jara, Milton (2011) Communication / Conférence
-
Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps Jara, Milton Article accepté pour publication ou publié
-
Landim, Claudio; Jara, Milton (2008) Article accepté pour publication ou publié