Far-field reflector problem and intersection of paraboloids
hal.structure.identifier | Centro de Informatica UFPE [Recife] [CIn] | |
dc.contributor.author | Machado Manhães De Castro, Pedro | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Mérigot, Quentin
HAL ID: 235 | |
hal.structure.identifier | Laboratoire Jean Kuntzmann [LJK] | |
dc.contributor.author | Thibert, Boris
HAL ID: 21388 | |
dc.date.accessioned | 2018-02-21T12:33:17Z | |
dc.date.available | 2018-02-21T12:33:17Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0029-599X | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17452 | |
dc.language.iso | en | en |
dc.subject | Reflector problem | en |
dc.subject | optimal transport | en |
dc.subject | power diagram | en |
dc.subject.ddc | 516 | en |
dc.title | Far-field reflector problem and intersection of paraboloids | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this article, we study the intersection (or union) of the convex hull of N confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-type problem arising in geometric optics. We show that in each of the four cases, the combinatorics is given by the intersection of a power diagram with the unit sphere. We prove the complexity is O(N) for the intersection of paraboloids and Omega(N^2) for the intersection and the union of ellipsoids. We provide an algorithm to compute these intersections using the exact geometric computation paradigm. This algorithm is optimal in the case of the intersection of ellipsoids and is used to solve numerically the far-field reflector problem. | en |
dc.relation.isversionofjnlname | Numerische Mathematik | |
dc.relation.isversionofjnlvol | 134 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2016-10 | |
dc.relation.isversionofjnlpages | 389–411 | en |
dc.relation.isversionofdoi | 10.1007/s00211-015-0780-z | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Géométrie | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2018-02-21T12:25:59Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |