
Local Optimization of Black-Box Function with High or Infinite-Dimensional Inputs
Roche, Angelina (2018), Local Optimization of Black-Box Function with High or Infinite-Dimensional Inputs, Computational Statistics, 33, 1, p. 467–485. 10.1007/s00180-017-0751-1
View/ Open
Type
Article accepté pour publication ou publiéDate
2018Journal name
Computational StatisticsVolume
33Number
1Publisher
Physica-Verl
Pages
467–485
Publication identifier
Metadata
Show full item recordAuthor(s)
Roche, AngelinaCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Abstract (EN)
Black-box optimization problems when the input space is a high-dimensional space or a function space appear in more and more applications. In this context, the methods available for finite-dimensional data do not apply. The aim is then to propose a general method for optimization involving dimension reduction techniques. Different dimension reduction basis are considered (including data-driven basis). The methodology is illustrated on simulated functional data. The choice of the different parameters, in particular the dimension of the approximation space, is discussed. The method is finally applied to a problem of nuclear safety.Subjects / Keywords
Response Surface Methodology; Design of Experiments; Functional data analysis; Black-box optimizationRelated items
Showing items related by title and author.
-
Liu, Jialin; Moreau, Antoine; Preuss, Mike; Rapin, Jeremy; Roziere, Baptiste; Teytaud, Fabien; Teytaud, O. (2020) Communication / Conférence
-
Turnbull, Thomas; Ekeland, Ivar (1983) Ouvrage
-
Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Fattorini, H.O.; Frankowska, Halina (1991) Article accepté pour publication ou publié
-
Chagny, Gaëlle; Comte, Fabienne; Roche, Angelina (2017) Article accepté pour publication ou publié