hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG] | |
dc.contributor.author | Afgoustidis, Alexandre | |
dc.date.accessioned | 2018-02-16T08:55:35Z | |
dc.date.available | 2018-02-16T08:55:35Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17395 | |
dc.language.iso | en | en |
dc.subject | Higson-Mackey analogy | en |
dc.subject | Tempered representations | en |
dc.subject | Lie group contractions | en |
dc.subject | Reductive Lie groups | en |
dc.subject | Baum-Connes (Connes-Kasparov) isomorphism | en |
dc.subject | Group C*-algebras | en |
dc.subject.ddc | 512 | en |
dc.title | A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We give a new representation-theory based proof of the Connes-Kasparov conjecture for the K-theory of reduced C*-algebras of real reductive Lie groups. Our main tool is a natural correspondence between the tempered representation theory of such a group and that of its Cartan motion group, a semidirect product whose unitary dual and reduced C*-algebra are much more tractable. With that tool in hand, our proof is a natural adaptation of that given by Nigel Higson's work in the complex semi-simple case. | en |
dc.identifier.citationpages | 20 | en |
dc.relation.ispartofseriestitle | cahier de recherche CEREMADE- Paris-Dauphine | en |
dc.identifier.urlsite | https://arxiv.org/pdf/1602.08891.pdf | en |
dc.subject.ddclabel | Algèbre | en |
dc.identifier.citationdate | 2016 | |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
hal.author.function | aut | |