Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
hal.structure.identifierInstitut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG]
dc.contributor.authorAfgoustidis, Alexandre
dc.date.accessioned2018-02-16T08:55:35Z
dc.date.available2018-02-16T08:55:35Z
dc.date.issued2016
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17395
dc.language.isoenen
dc.subjectHigson-Mackey analogyen
dc.subjectTempered representationsen
dc.subjectLie group contractionsen
dc.subjectReductive Lie groupsen
dc.subjectBaum-Connes (Connes-Kasparov) isomorphismen
dc.subjectGroup C*-algebrasen
dc.subject.ddc512en
dc.titleA Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groupsen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe give a new representation-theory based proof of the Connes-Kasparov conjecture for the K-theory of reduced C*-algebras of real reductive Lie groups. Our main tool is a natural correspondence between the tempered representation theory of such a group and that of its Cartan motion group, a semidirect product whose unitary dual and reduced C*-algebra are much more tractable. With that tool in hand, our proof is a natural adaptation of that given by Nigel Higson's work in the complex semi-simple case.en
dc.identifier.citationpages20en
dc.relation.ispartofseriestitlecahier de recherche CEREMADE- Paris-Dauphineen
dc.identifier.urlsitehttps://arxiv.org/pdf/1602.08891.pdfen
dc.subject.ddclabelAlgèbreen
dc.identifier.citationdate2016
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record