• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups

Thumbnail
Date
2016
Publishing date
2016
Collection title
cahier de recherche CEREMADE- Paris-Dauphine
Link to item file
https://arxiv.org/pdf/1602.08891.pdf
Dewey
Algèbre
Sujet
Higson-Mackey analogy; Tempered representations; Lie group contractions; Reductive Lie groups; Baum-Connes (Connes-Kasparov) isomorphism; Group C*-algebras
URI
https://basepub.dauphine.fr/handle/123456789/17395
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Afgoustidis, Alexandre
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
250709 Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG]
Type
Document de travail / Working paper
Item number of pages
20
Abstract (EN)
We give a new representation-theory based proof of the Connes-Kasparov conjecture for the K-theory of reduced C*-algebras of real reductive Lie groups. Our main tool is a natural correspondence between the tempered representation theory of such a group and that of its Cartan motion group, a semidirect product whose unitary dual and reduced C*-algebra are much more tractable. With that tool in hand, our proof is a natural adaptation of that given by Nigel Higson's work in the complex semi-simple case.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.