• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The N-body problem

Féjoz, Jacques (2015), The N-body problem, in Alessandra Celletti, Celestial Mechanics, Unesco : Paris, p. 126-167

Type
Chapitre d'ouvrage
External document link
https://www.ceremade.dauphine.fr/~fejoz/Articles/Fejoz_2014_nbp.pdf
Date
2015
Book title
Celestial Mechanics
Book author
Alessandra Celletti
Publisher
Unesco
Series title
Encyclopedia of Life Support Systems
Published in
Paris
ISBN
978-1-78021-519-8
Number of pages
520
Pages
126-167
Metadata
Show full item record
Author(s)
Féjoz, Jacques
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Abstract (EN)
We introduce the N-body problem of mathematical celestial mechanics, and discuss its astronomical relevance, its simplest solutions inherited from the two-body problem (called homographic motions and, among them, homothetic motions and relative equilibria), Poincaré's classification of periodic solutions, symmetric solutions and in particular choreographies such as the figure-eight solution, some properties of the global evolution and final motions, Chazy's classification in the three-body problem, some non-integrability results, perturbations series of the planetary problem and a short account on the question of its stability.
Subjects / Keywords
Newton's equation; symmetry; reduction; Conley-Wintner endomorphism; stability; planetary problem; Hill's problem; central configuration; homographic motions; relative equilibria; homothetic motion; periodic orbit; Poincaré's classification; choreography; figure-eight solution; Lagrangian action; Lagrange-Jacobi identity; Sundman's inequality; collision; regularization; Marchal-Chenciner's theorem; non-collision singularity; final motions; Chazy's classification; integrability; first integral; transverse heteroclinic intersection; monodromy group; differential Galois theory; Lindstedt series; von Zeipel series; small denominators; Birkhoff series; Lagrange and Laplace stability theorems; Arnold's theorem; quasi-periodic orbit; Nekhoroshev theorem; KAM theory; instability; symbolic dynamics

Related items

Showing items related by title and author.

  • Thumbnail
    Unchained polygons and the N-body problem 
    Chenciner, Alain; Féjoz, Jacques (2009) Article accepté pour publication ou publié
  • Thumbnail
    The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium 
    Chenciner, Alain; Féjoz, Jacques (2008) Article accepté pour publication ou publié
  • Thumbnail
    Averaging the planar three-body problem in the neighborhood of double inner collisions 
    Féjoz, Jacques (2001) Article accepté pour publication ou publié
  • Thumbnail
    Quasiperiodic motions in the planar three-body problem 
    Féjoz, Jacques (2002) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion along mean motion resonance in the restricted planar three-body problem 
    Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2011) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo