• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Introduction to KAM theory, with a view to celestial mechanics

Féjoz, Jacques (2016), Introduction to KAM theory, with a view to celestial mechanics, in J.-B. Caillau, M. Bergounioux, G. Peyré, C. Schnörr, T. Haberkorn, Variational Methods. In Imaging and Geometric Control, De Gruyter, p. 387-433. 10.1515/9783110430394-013

Type
Chapitre d'ouvrage
External document link
https://www.ceremade.dauphine.fr/~fejoz/articles.php
Date
2016
Book title
Variational Methods. In Imaging and Geometric Control
Book author
J.-B. Caillau, M. Bergounioux, G. Peyré, C. Schnörr, T. Haberkorn
Publisher
De Gruyter
Series title
Radon Series on Computational and Applied Mathematics, 18
ISBN
978-3-11-043039-4
Number of pages
526
Pages
387-433
Publication identifier
10.1515/9783110430394-013
Metadata
Show full item record
Author(s)
Féjoz, Jacques
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Abstract (EN)
The theory of Kolmogorov, Arnold, and Moser (KAM) consists of a set of results regarding the persistence of quasiperiodic solutions, primarily in Hamiltonian systems.We bring forward a “twisted conjugacy” normal form, due to Herman, which contains all the (not so) hard analysis. We focus on the real analytic setting. A variety of KAM results follow, includingmost classical statements as well asmore general ones. This strategy makes it simple to deal with various kinds of degeneracies and symmetries. As an example of application, we prove the existence of quasiperiodic motions in the spatial lunar three-body problem.
Subjects / Keywords
three-body problem; symmetries; degeneracies; KAM theorem

Related items

Showing items related by title and author.

  • Thumbnail
    Introduction to KAM Theory 
    Féjoz, Jacques (2011) Communication / Conférence
  • Thumbnail
    About M. Herman's proof of 'Arnold's Theorem' in celestial mechanics 
    Féjoz, Jacques (2005) Communication / Conférence
  • Thumbnail
    KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition 
    Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié
  • Thumbnail
    A short introduction to arbitrage theory and pricing in mathematical finance for discrete-time markets with or without friction 
    Lépinette, Emmanuel (2019) Article accepté pour publication ou publié
  • Thumbnail
    Hamiltonian perturbation theory for ultra-differentiable functions 
    Bounemoura, Abed; Féjoz, Jacques (2021) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo